

1.49

Date Planned : / /	Daily Tutorial Sheet-13	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

147. At 800°C, the following equilibrium is established as $F_2(g) \rightleftharpoons 2F(g)$ The composition of equilibrium may be determined by measuring the rate of effusion of the mixture through a pin hole. It is found that at 800°C and 1 atm mixture effuses 1.6 times as fast as SO_{2} effuses under the similar conditions. What is (\mathbf{I})

- the value of K_{p} (in atm)? (C)
- (\mathbf{I}) 148. Calculate $\Delta_r G$ for the reaction at 27°C $H_2(g) + 2Ag^+(aq) \Longrightarrow 2Ag(s) + 2H^+(aq)$ Given : $P_{H_0} = 0.5 \, \text{bar}$; $[Ag^+] = 10^{-5} \, \text{M}$; $[H^+] = 10^{-3} \, \text{M}$; $\Delta_r G^{\circ} [Ag^+(aq)] = 77.1 \, \text{kJ} / \text{mol}$
- **(B)** $-178.9 \,\mathrm{kJ/mol}$ **(C)** $-129.5 \,\mathrm{kJ/mol}$ **(D) (A)** $-154.2 \,\mathrm{kJ} \,/\,\mathrm{mol}$ None of these
- \odot 149. When N₂O₅ is heated at certain temperature, it gets dissociated as

$$N_2O_5(g) \rightleftharpoons N_2O_3(g) + O_2(g); K_c = 2.5.$$

At the same time N_2O_3 also decomposes as: $N_2O_3(g) \rightleftharpoons N_2O(g) + O_2(g)$ If initially 4.0 moles of $\rm\,N_2O_5$ are taken in 1.0 litre flask and allowed to dissociate, concentration of $\rm\,O_2$ at equilibrium is 2.5M. Equilibrium concentration of $\rm\,N_2O_5$ is :

- (A) (B) 1.846
- Two solid compounds X and Y are dissociated at a certain temperature as follows 150. $X(s) \rightleftharpoons A(g) + 2B(g); K_{p_1} = 9 \times 10^{-3} \text{ atm}^3, \quad Y(s) \rightleftharpoons 2B(g) + C(g); K_{p_2} = 4.5 \times 10^{-3} \text{ atm}^3$ The total pressure of gases over a mixture of X and Y is: (A) 4.5 atm **(B)** 0.45 atm (C) 0.6 atm (D) None of these

Paragraph for Question No. 151 - 152

0.315

(A)

Variation of equilibrium constant K with temperature is given by van't Hoff equation $\ln K = \frac{\Delta S_{r}^{\circ}}{R} - \frac{\Delta H_{r}^{\circ}}{RT}$ from this equation, ΔH_r° can be evaluated if equilibrium constants K_1 and K_2 at two temperature T_1 and T_2 are known. $\log\left(\frac{K_2}{K_1}\right) = \frac{\Delta H_r^{\circ}}{2.303 \, R} \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$

- For an Isomerisation reaction $X(g) \rightleftharpoons Y(g)$, the temperature dependency of equilibrium constant is given by : $\ln K = 2 - \frac{1000}{T}$. The value of $\Delta_r S^\circ$ at 300 K is :
 - 0.685 (C) 0.46 (A) 0.315 (D) 1.49
- 152. Select the correct statement: (A) Value of K_{eq} always increases with increase in temperature
 - For exothermic reaction value of $\,K_{\mathrm{eq}}\,$ increases with decrease in temperature **(B)**
 - (C) For endothermic reaction value of K_{eq} increases with decrease in temperature
 - For exothermic reaction slope of log K Vs. 1/T is negative **(D)**